SLSQP¶
GPyOpt does this and that…
For details please refer to http://sheffieldml.github.io/GPyOpt/
Not sure why it is not showing the docstring and Args here below…?
- 
class 
olympus.planners.Slsqp(goal='minimize', disp=False, eps=1.4901161193847656e-08, ftol=1e-06, maxiter=15000, init_guess=None, init_guess_method='random', init_guess_seed=None)[source] Sequential Least SQuares Programming (SLSQP) optimizers. SciPy implementation.
- Parameters
 goal (str) – The optimization goal, either ‘minimize’ or ‘maximize’. Default is ‘minimize’.
disp (bool) – Set to True to print convergence messages. If False, verbosity is ignored and set to 0.
eps (float) – Step size used for numerical approximation of the Jacobian.
ftol (float) – Precision goal for the value of f in the stopping criterion.
maxiter (int) – Maximum number of iterations.
init_guess (array, optional) – initial guess for the optimization
init_guess_method (str) – method to construct initial guesses if init_guess is not provided. Choose from: random
init_guess_seed (str) – random seed for init_guess_method
Methods
tell([observations])Provide the planner with all previous observations.
ask([return_as])suggest new set of parameters
recommend([observations, return_as])Consecutively executes tell and ask: tell the planner about all previous observations, and ask about the next query point.
optimize(emulator[, num_iter, verbose])Optimizes a surface for a fixed number of iterations.
set_param_space(param_space)Defines the parameter space over which the planner will search.
- 
ask(return_as=None) suggest new set of parameters
- Parameters
 return_as (string) – choose data type for returned parameters allowed options (dict, array)
- Returns
 newly generated parameters
- Return type
 ParameterVector
- 
optimize(emulator, num_iter=1, verbose=False) Optimizes a surface for a fixed number of iterations.
- Parameters
 emulator (object) – Emulator or a Surface instance to optimize over.
num_iter (int) – Maximum number of iterations allowed.
verbose (bool) – Whether to print information to screen.
- Returns
 - Campaign object with information about the optimization, including all parameters
 tested and measurements obtained.
- Return type
 campaign (Campaign)
- 
recommend(observations=None, return_as=None) Consecutively executes tell and ask: tell the planner about all previous observations, and ask about the next query point.
- Parameters
 observations (list of ???) –
return_as (string) – choose data type for returned parameters allowed options (dict, array)
- Returns
 newly generated parameters
- Return type
 list
- 
set_param_space(param_space) Defines the parameter space over which the planner will search.
- Parameters
 param_space (ParameterSpace) – a ParameterSpace object defining the space over which to search.
- 
tell(observations=<olympus.campaigns.observations.Observations object>) Provide the planner with all previous observations.
- Parameters
 observations (Observations) – an Observation object containing all previous observations. This defines the history of the campaign seen by the planner. The default is None, i.e. there are no previous observations.