Conjugate Gradient¶
does this and that…
- 
class olympus.planners.ConjugateGradient(goal='minimize', disp=False, maxiter=None, gtol=1e-05, norm=inf, eps=1.4901161193847656e-08, init_guess=None, init_guess_method='random', init_guess_seed=None)[source]
- Conjugate Gradient optimizer based on the SciPy implementation. - Parameters
- goal (str) – The optimization goal, either ‘minimize’ or ‘maximize’. Default is ‘minimize’. 
- disp (bool) – Set to True to print convergence messages. 
- maxiter (int) – Maximum number of iterations to perform. 
- gtol (float) – Gradient norm must be less than gtol before successful termination. 
- norm (float) – Order of norm (Inf is max, -Inf is min). 
- eps (float or ndarray) – If jac is approximated, use this value for the step size. 
- init_guess (array, optional) – initial guess for the optimization 
- init_guess_method (str) – method to construct initial guesses if init_guess is not provided. Choose from: random 
- init_guess_seed (str) – random seed for init_guess_method 
 
 - Methods - tell([observations])- Provide the planner with all previous observations. - ask([return_as])- suggest new set of parameters - recommend([observations, return_as])- Consecutively executes tell and ask: tell the planner about all previous observations, and ask about the next query point. - optimize(emulator[, num_iter, verbose])- Optimizes a surface for a fixed number of iterations. - 
ask(return_as=None)
- suggest new set of parameters - Parameters
- return_as (string) – choose data type for returned parameters allowed options (dict, array) 
- Returns
- newly generated parameters 
- Return type
- ParameterVector 
 
 - 
optimize(emulator, num_iter=1, verbose=False)
- Optimizes a surface for a fixed number of iterations. - Parameters
- emulator (object) – Emulator or a Surface instance to optimize over. 
- num_iter (int) – Maximum number of iterations allowed. 
- verbose (bool) – Whether to print information to screen. 
 
- Returns
- Campaign object with information about the optimization, including all parameters
- tested and measurements obtained. 
 
- Return type
- campaign (Campaign) 
 
 - 
recommend(observations=None, return_as=None)
- Consecutively executes tell and ask: tell the planner about all previous observations, and ask about the next query point. - Parameters
- observations (list of ???) – 
- return_as (string) – choose data type for returned parameters allowed options (dict, array) 
 
- Returns
- newly generated parameters 
- Return type
- list 
 
 - 
set_param_space(param_space)
- Defines the parameter space over which the planner will search. - Parameters
- param_space (ParameterSpace) – a ParameterSpace object defining the space over which to search. 
 
 - 
tell(observations=<olympus.campaigns.observations.Observations object>)
- Provide the planner with all previous observations. - Parameters
- observations (Observations) – an Observation object containing all previous observations. This defines the history of the campaign seen by the planner. The default is None, i.e. there are no previous observations.